

Validating AIRS L2 cloud properties with ARM, MLS, and MODIS measurements

Brian Kahn, Annmarie Eldering, Eric Fetzer, Evan Fishbein, Michael Garay, Jonathan Jiang, Sung-Yung Lee, et al.

California Institute of Technology

Jet Propulsion Laboratory

04 May 2005

Outline of Talk

- "Reconstruct" BT from AIRS and MODIS
- Satellite-to-surface comparisons of clouds what can go wrong?
- Compare AIRS CTP to Manus Island ARM site ARSCL
 - Upper layer CTP
 - Both layers of CTP
- MLS-to-AIRS comparisons

Reconstructed BT of AIRS and MODIS

$$BT_{AIRS} = f_1 \cdot T_1 + f_2 \cdot T_2 + (1 - f_1 - f_2) \cdot T_{sfc}$$

$$BT_{MODIS} = f_{cld} \cdot T_{cld} + (1 - f_{cld}) \cdot T_{sfc}$$

- Build BT from MODIS and AIRS cloud and surface products
- This is an approximate calculation → replace Planck function by T of emitting layer or surface
- *First-order* means of comparison it is *not* a head-to-head comparison of CTP, CTT, ECF, etc.
- All products averaged to AMSU scale

Reconstructed BT

- Highest, optically thickest clouds agree best
- Low and optically thin clouds tend to produce more scatter
- The "kink" around 280 K may be related to MODIS retrieval method

Comparing AIRS and ARM measurements

- What can go wrong? Quite a bit.
- Vertical and horizontal cloud inhomogeneity: microphysical, optical, and bulk
 - Average ground measurements in time → "replicate" scale of satellite footprint/pixel
 - Clouds evolve: generate and dissipate with time, inhomogeneities not constant
 - Vertical and horizontal wind speed and direction shear → not constant in time & space
 - Ground measurements only sample a "line" through pixel what about to the side?
 - Pixel not necessarily centered over ground measurement

Comparing AIRS and ARM measurements

- Passive versus active measurements → differences in sensitivities to hydrometeors
- Instrument specifics
 - Field-of-view differences, e.g., satellite view angle of AIRS ± 48.95°
 - Uncertainty in "ground truth" location of pixel
 - Uncertainties in spatial response function, not necessarily uniform over pixel
- Differences in retrieval methods
 - For identical measurements → different answers of cloud properties with different methods
 - Retrievals are not perfect

AIRS vs. Manus Is. CTH

- Diameter of circle proportional to ECF (larger diameter, larger ECF)
- Gray scale is the BT at 960 cm⁻¹
- The vertical bars are L2 operational uncertainties on AIRS CTH.
- The horizontal bars are the $1-\sigma$ CTH variability for the three different time windows. These error bars are not directly comparable to the AIRS L2 error bars.

AIRS vs. Manus Is. CTH

Histogram of differences for all comparisons between Cloud Lidar System (CLS) and CO₂-slicing of MODIS Airborne Simulator (MAS) coincident observations [*Frey et al., JGR*, 1999]

Histogram of differences between AIRS L2 CTP and ARM Manus Island ARSCL cloud boundaries. "avg" and "hist" for two definitions of ARSCL CTH, and "ran" for random, or "mixed-up" clouds

AIRS vs. Manus Is. CTH – 2 layers

- Previous work at TWP ARM sites show three peaks ~ 1-2, 6, and 12–13 km
- AIRS indicates a peak near surface, 10km
- AIRS has a higher incidence of high cloud detection from 15–19 km

AIRS vs. Nauru Is. CTH

Left: AIRS and ARM CTH for an ECF \leq 0.15 for 60 min histogram-derived CTH. The highest CTH peak in the histogram is used here.

Right: Same as the left, except the horizontal line is the difference between the *max* CTH and *avg* CTH for the ARM site.

MLS vs. AIRS CTH comparisons

Day MLS – AIRS CTP MLS – high AIRS CTP

11-5-2004 $-59.0 \pm 83.8 \text{ mb}$ $-10.8 \pm 75.4 \text{ mb}$ 11-5-2004 $-45.3 \pm 57.5 \text{ mb}$ $-0.5 \pm 67.6 \text{ mb}$ 12-23-2004 $-58.4 \pm 72.9 \text{ mb}$ $-6.7 \pm 71.3 \text{ mb}$

Blue: all MLS/AIRS cloudy coincidences

Red: removed AIRS ret_type = 100

Summary and Conclusions

- Reconstructed BT indicates best agreement for MODIS and AIRS for ret_type > 0
- Upper level AIRS L2 CTP in good agreement with Manus Is. ARSCL data
 - Use in quantitative analyses
 - Lower CTP more problematic
 - Why are the histograms of AIRS and ARM CTH so similar to Frey et al. [1999]?
- MLS AIRS CTP comparisons encouraging
 - Best agreement for highest AIRS CTP along MLS field-of-view

Current and future work

- Use raw backscatter lidar profiles at Manus and Nauru to validate thinnest Ci clouds
- Explore utility of ARM site surface-derived IR effective cloud fraction
- Ongoing revisions of MLS IWC re-do analyses
- Expand to SGP, NSA ARM sites?